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Abstract—Active worms, a category of self-replicating 
malicious programs which could spread in an automated 
fashion and flood particular Peer-to-Peer (P2P) networks 
within very short time, have drawn significant attention. 
However, only limited number of studies focus on 
propagation model of active worms with fair consideration 
of P2P nodes’ dynamic features consisting of P2P churn, 
random quarantine, regular immunization, dynamic 
fragmentation and etc. This paper proposes three 
propagation models of active worms under dynamic P2P 
environment, conducts a mathematical analysis on the 
propagation of active worms under presented models and 
provides extensive numerical studies to the impact of 
relevant parameters on active worms’ propagation speed 
under dynamic P2P environment. Models presented in this 
paper are simple, effective and thus applicable for defending 
against active worms in real P2P networks.  
 
Index Terms—active worm, dynamic feature, propagation 
model, P2P networks 
 

I.  INTRODUCTION 

As a future technology of Wireless Broadband Internet, 
the transmission mode of P2P networks has turned into a 
hot spot. Fortune Magazine acclaims P2P network one of 
the four technologies that will shape the Internet’s future.  
Nowadays, P2P networks account for 37% of overall 
Internet traffic, and this number is even as high as 90 in 
multimedia data sharing services. P2P networks provide 
great convenience for resource sharing systems and fast 
routing mechanism, yet they also give it a rise to Internet 
worms' fast spread and massive invasion. 

Based on the Computer Network Emergency Response 
Technical Team Coordination Center’s statistics, the 
number of cyber security incidents has grown 
exponentially at a rate of 50% every year since 1988. 
Among them, malicious code over Internet always ranks 
the first place due to their fast diffusion, wide range of 
victims and strong penetrability. Currently active worms 
make the greatest potential pitfall for their self-

propagation with no human invention. 
Research into propagation model of active worms 

enables insights of worm behavior and features, helps 
detect and defense active worms. A great deal of research 
has been done on active worms’ propagation model and 
defensive measure within recent years. For instance, 
Chen et al. developed an active worm propagation model 
on the basis of discrete time [1]; Yu et al. analyzed the 
propagation strategy and propagation process of P2P 
worms based on simple epidemic model applied to static 
network topology [2]; they also compared P2P worm 
propagation performance in four different attack 
strategies, indicating P2P worms based on hit-list 
scanning strategy best attack-efficient [3]; A method of 
building secure P2P networks using benign worms 
against malicious worms was introduced by Jia et al. [4]; 
Wang et al. presented a propagation model of active P2P 
worms under Chord networks [5]; Moreover, Ravikumar 
et al. modeled the spread of malware in decentralized, 
Gnutella type of peer-to-peer networks [6]; And  
propagation procedure of active worm in P2P networks 
based on topology scanning strategy using of logic matrix 
was addressed by Fan [7] [8]; Additionally Zhang et al. 
completed a static model on active worms within 
unstructured P2P system [9]; Besides a dynamic 
quarantine protocol towards defending active worms in 
P2P networks was designed by Yang et al. quarantining 
the suspicious host, and they developed a corresponding 
mathematical model of PWPQ to prove the effectiveness 
of this method [10]; Chen et al. brought forward a repair-
and-patch approach to quarantine malicious worms 
quickly in unstructured P2P networks [11]; In addition, 
Feng et al. [12] and Li et al. [13] respectively addressed 
two propagation models of active worms with the 
reference to degree difference of nodes under 
unstructured P2P networks; Suto et al. proposed a method 
constructing network matching bimodal-degree 
distribution [14], thus being naturally robust against both 
attack and failure, and they obtained simulation results 
proving it eligible for higher resilience; A membership 
function of trusted set was established by Zhou et al.  Manuscript received August 6, 2013; revised March 15, 2014;
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according to the trusted level in the P2P trust model and 
maximum membership principle [15], the simulation 
results showed that the method was strong applicability in 
the event that the granularity of trusted level was great; 
Guo et al. proposed a peer classification method based on 
fuzzy clustering [16], and proved their method could 
effectively avoid false recommendation, and enhanced 
the accuracy of trust evaluation in P2P networks; Meng et 
al. came up with a hierarchical clustering P2P network 
model based on user interest in [17], and the simulation 
results showed this method could form cluster more 
rapidly and gain the appropriate resources faster than 
traditional algorithm. 

The above describes the propagation process of active 
worms to some extent, provides valuable reference 
material for establishing corresponding defense system of 
active worms. Whereas existing propagation models more 
or less ignore some major or minor behavior 
characteristics of P2P nodes within P2P networks, lack 
consideration of dynamic characteristics’ effects on P2P 
nodes in which active worms propagate. Hence they have 
their limitations. This paper attempts to address the issue, 
makes the following three major contributions. 

• We study three common attack strategies of active 
worms in P2P networks and provide states 
transition process of nodes when active worms 
spread in accordance with these strategies. 

• We present three propagation models on the basis 
of above attack strategies and also describe the 
propagation process of active worms considering 
the dynamic features of P2P nodes comprising of  
random stirring, dynamic quarantine, regular 
immunization, data partition transmission, 
retarded growth of worms and execution in 
sequential order  of downloaded files. 

• We conduct mathematical analysis to study 
models proposed, deduce a number of key 
parameters affecting propagation speed of active 
worms in P2P networks, making it applicable for 
defending against active worms in real P2P 
networks. 

The rest of this paper is organized as follows. Section 2 
studies three common attack strategies of active worms in 
P2P networks and elaborates states transition process of 
nodes when active worms spread in accordance with 
these strategies; section 3 presents three propagation 
models of active worms in P2P networks based on 
different strategies and describes the propagation process 
of active worms with consideration of dynamic features 
of P2P nodes; section 4 analyzes the defined propagation 
models by mathematical analysis and deduces a number 
of key parameters affecting propagation speed of active 
worms in P2P network; section 5 proposes conclusions 
and future work; eventually the acknowledgment is put 
forward in section 6. 

II.  THREE ATTACK STRATEGIES FOR ACTIVE WORMS IN 
P2P NETWORKS 

In P2P networks, there are three major attack strategies 
of active worms, they are listed as below. 

A.  Random Scanning Attack Strategy 
Based on this attack strategy, an infected node will 

pick one address randomly each time and attempt to 
attack without collecting routing information of other 
nodes in advance. If the selected IP address has been 
assigned to a P2P node with security vulnerabilities, the 
P2P node will be infected with a probability ϕ . Once the 
P2P node completes downloading all the worm file 
fragments, it will turn to be a new worm-spreading node 
and will infect other uninfected nodes in the same way. 
Otherwise this attack strategy will fail.  

B.  Hit-list Scanning Attack Strategy 
Applied this attack strategy, a worm node collects 

routing information of other online P2P nodes in advance, 
then automatically creates a scan list (Hit-list) and attacks 
destination nodes based on the Hit-list. When any healthy 
nodes get infected by an infected node, the previously 
infected node will upload non-scanned portion of the Hit-
list to them. Successively these newly infected nodes 
continue attacking uninfected nodes on list in the same 
pattern, until each node in Hit-list has been scanned.  

C.  Topological Scanning Attack Strategy 
Once active worms are released into P2P networks 

using this attack strategy, they will scan all their neighbor 
nodes in accordance with network topology to find 
uninfected P2P nodes with secure vulnerability and 
employ attacks. If they have completed, newly infected 
nodes will search for their next targets in the same pattern. 

D.  States Transition Process of Nodes When Active 
Worms Spread 

P2P nodes have some particular characteristics in 
dynamic environment, therefore indicate different states 
in different phases of active worms’ propagation, The 
summary of these states is listed as follows： 

• Infection-susceptible state (state S ): This is the 
state in which one online node is vulnerable to 
worm attacks due to its security vulnerability, 
however worm file has not been downloaded. 

• Latent state (state L ): This is the state in which a 
previous S  state node has completed downloading 
worm file from another online worm node, but the 
file has not been executed yet. At this phase, the 
node carrying worm file cannot be infected by the 
same type of active worms; nor is it contagious. 

• Infected state (state I ): Once a worm file has 
been executed by a L -state node, it transforms 
into I -state. Now, the node is contagious and a 
worm node. 

• Quarantined state (state Q ): Once an I -state 
node has been detected by monitoring software 
while transmitting active worms, it will be 
quarantined, and converted into the quarantined 
state. At this stage, the node is no longer 
contagious. 

• Immune state (state R ): This is the state when an 
online node has been patched by security software. 
At this stage, the node is immune to active worms 
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and contagious. 
• Offline state (state O ): This is the state where the 

node has left P2P networks. 
State transition of nodes is shown in Figure 1, the 

description is as follows: 

( , )β δ

ϕ
1r 2r 3r 4r

η χ

ααβ βα
β

α α β

 
Figure 1. States transition process of nodes 

When a benign node containing security vulnerability 
joins P2P network, it is in infection-susceptible state ( S ); 
if it has been patched, it is in immune state ( R ). When a 
malevolently infectious node joins P2P network, it is in 
infected state ( I ); when a node in I -state scans another 
node in S -state, the infected node will inject a worm file 
into the uninfected node with a probabilityϕ ; after the S -
state node completes downloading worm file without 
execution, the state of this node changes into the 
latent state ( L ); A L -state node executes worm files 
with a probability of η , then its state will  be converted 
into infected state ( I ); when an I -state node is detected 
by monitoring software with a probability χ  while 
transmitting active worms, it will be quarantined and 
successively its state will be converted into quarantined 
state ( Q ); if an online node been found alternatively in 
S -state, L -state, I -state, or Q -state with security 
vulnerability in periodic inspection, security software will 
patch it converting its state into immune state( R ) with 
probabilities 1r , 2r , 3r , and 4r   respectively; all online 
nodes have a probability α  to choose leaving P2P 
network, and their states would be converted into offline 
state( O ); meanwhile, all offline nodes have a 
probability β  to choose joining P2P network, and then 
their states will return to their original states before being 
offline ； And some offline nodes will reinstall their 
operation systems with a probability δ , so when they 
resume to be online and their states will be convert into 
infection-susceptible state ( S ).  

III.  THREE PROPAGATION MODELS OF ACTIVE WORMS IN 
P2P NETWORKS 

A.  Parameters and Hypotheses 
We develop three propagation models of active worms 

in P2P networks based on attack strategies mentioned 
before. In order to simplify modeling process, we 

suppose worm nodes based on Hit-list scanning strategy 
have collected all the routing information of online P2P 
nodes in advance; no matter which attack strategy worm 
nodes apply, they will not attack infected nodes for a 
second time; addtionally, a worm node can finish 
injecting all of  worm file fragments into an uninfected 
node within a unit duration; the number of P2P nodes is 
set to be 10000. Table I. lists all variables in models. 

TABLE 
VARIABLES IN MODELS 

Variable Definition 

T  Total number of nodes in networks 

λ  Scanning rate of a worm node (the number of nodes that can 
be simultaneously scanned by one infected node) 

ϕ  The probability that a node in state S (already scanned by a 
worm node) will be infected. 

α  Offline rate of an online node 

β  Online rate of an offline node 

δ  The probability that an offline node resume being online after 
reinstalling OS 

a  Average bandwidth of P2P networks 

W  Size of an integrated worm file 

η  
Download rate of a worm node(number of worm files that 

can be downloaded by a L -state node within a unit of time, 
/a Wη = ) 

χ  
Detection rate (the probability that a node in state I  is 

detected by monitoring software when transmitting worm file 
fragments, and then its state will be turned into quarantined 

state) 

γ  The ratio of valid addresses to total 4IPv  address space in 
P2P networks, 24%γ <  [17] 

1r  
The probability that a node in state S  is found containing 
security vulnerability by security software, then it will be 
patched and its state will be transited into immune state 

2r  
The probability that a node in state L  is found containing 
security vulnerability by security software, then it will be 
patched and its state will be transited into immune state 

3r  
The probability that a node in state I  is found containing 
security vulnerability by security software, then it will be 
patched and its state will be transited into immune state 

4r  
The probability that a node in state Q  is found containing 

security vulnerability by security software, it will be patched 
and its state will be transited into immune state 

ϖ  Mean degree value of a node in unstructured P2P networks

θ  Degree value of a node in structured P2P networks 

1C  A constant corresponding to ϖ  

ε  The extent to which topologies of P2P networks meet power 
law model, [1,8]ε ∈  

k  Degree of any node in P2P networks 

( )M tΘ Average probability of a node in state S  connecting to a I -
state node at time t  

( )NS t
Number of online nodes in infection-susceptible state at time 

t , where (0)NS  indicates  the total number of nodes in 
infection-susceptible state in P2P networks initially 

( )OS t The number of offline nodes that were transited from the 
nodes in state S at time t  

( )S t
Total number of nodes in infection-susceptible state at time 

t , ( ) ( ) ( )N oS t S t S t= +  
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B.  Propagation Model Based on Random Scanning 
Strategy (PRS Model) 

Propagation Model Based on Random Scanning 
Strategy (PRS Model):  

Theorem 1:  
1

0
( ) ( )(1 )

t it
o Ni

S t S iα β
−−

=
= −∑   

1

0
( ) ( )(1 )

t it
o Ni

E t E iα β
−−

=
= −∑  

1

0
( ) ( )(1 )

t it
o Ni

I t I iα β
−−

=
= −∑   

1

0
( ) ( )(1 )

t it
o Ni

Q t Q iα β
−−

=
= −∑    

1

0
( ) ( )(1 )

t it
o Ni

R t R iα β
−−

=
= −∑  

Proof:  
When 1t = , (1)OS  is 1 β−  times than (0)OS , and 

when 0t = , the number of offline nodes transited from 
nodes in state S  is (0)NSα i . 

Therefore (1) (0) (1 )O NS Sα β= −i i . 
When 2t = , (2)OS  is 1 β−  times than (1)OS . 

When 1t = , the number of offline nodes transited from 
nodes in state S  equals (1) (1)o NS Sα+ i . 

Therefore 2 1 2
0

(2) ( ) (1 ) i
O Ni

S S iα β− −
=

= −∑i i . 

Similarly, the theorem 1

0
( ) ( )(1 )

t it
o Ni

S t S iα β
−−

=
= −∑  

holds. 
Evidenced by the same token: 

 
1

0
( ) ( )(1 ) ,

t it
o Ni

E t E iα β
−−

=
= −∑  

1

0
( ) ( )(1 ) ,

t it
o Ni

I t I iα β
−−

=
= −∑  

1

0
( ) ( )(1 ) ,

t it
o Ni

Q t Q iα β
−−

=
= −∑        

1

0
( ) ( )(1 )

t it
o Ni

R t R iα β
−−

=
= −∑  

Theorem 2:  
( ) (1 ( )/ (0))( 1) ( ) [1 (1 1/ ) ]N N NI t I t S

N NA t S t T λϕ −+ = − − i ii i  

Proof:  
The probability of an S state−  node that has not been 

selected by a worm node based on random scanning 
strategy in one-time scan equals 1 1 / T− ; there were 

( )NI t  online infected nodes at time t , every online 
infected node will be scanned λ  times in each round; 
given that several different active worms based on 
random scanning strategy are likely to pick up the same 
node to attack, the number of effective scans for such 
attack is approximately subject to the law of logistic 
block growth. The ratio of effective scans to all scans 
could be calculated as 1 ( ) / ( )N NI t S t− , thus all online 
nodes in state I would conduct ( ) [1 ( ) / ( )]N N NI t I t S tλ −i i  
effective scans at time t ; probability of a node in state S  
that would be scanned effectively at least once by a worm 
node is ( ) [1 ( )/ (0)]1 (1 1/ ) N N NI t I t ST λ −− − i i ; meanwhile, there 
are ( )NS t  online nodes in state S  at time t , if these 
nodes are scanned by worm nodes, they would be 
infected with a probability ϕ . Therefore the number of 
additional online nodes whose states are transited from S   
to L  at time 1t +  is: 

 ( ) (1 ( )/ (0))( 1) ( ) [1 (1 1/ ) ]N N NI t I t S
N NA t S t T λϕ −+ = − − i ii i . 

Theorem 3: 
1( 1) (1 ) ( ) ( ) ( ) ( 1)N N o NS t r S t S t O t A tα β δ+ = − − + + − +i i i

    Proof:  
At time 1t + , in addition to original ( )NS t  nodes in 

state S , there are ( ) ( )oS t O tβ δ+i i  nodes whose states 
have been transited from O  to S ; meanwhile, there are  

( 1)NA t +  nodes whose states have been transited from S  
to L , ( )NS tα i  nodes whose states have been transited 
from S  to O , and 1 ( )Nr S ti  nodes whose states have 
been transited from S  to R . Hence, theorem 3 holds. 

Theorem 4:  
2( 1) (1 ) ( ) ( ) ( 1)N N o NL t r L t L t A tα η β+ = − − − + + +i i  

Proof:  

At time 1t + , in addition to original ( )NL t  nodes in 
state L , there are ( )oL tβ i  nodes whose states have been 
transited from O  to L  and ( 1)NA t +  nodes whose states 
have been transited from S  to L ; meanwhile, there are 

( )NL tα i  nodes whose states have been transited from L  
to O , 2 ( )Nr L ti  nodes whose states have been transited 
from L  to R  and ( )NL tηi  nodes whose states have been 
transited from L  to I . Hence, theorem 4 holds. 

Theorem 5:  
3( 1) (1 ) ( ) ( ) ( )N N o NI t r I t I t E tα χ β η+ = − − − + +i i i  

Proof:  

At time 1t + , in addition to original ( )NI t  nodes in 
state I , there are ( )oI tβ i  nodes whose states have been 

( )NL t  Number of online nodes in latent state at time t  

( )OL t  
The number of offline nodes transited from state L  at time 

t  

( )NI t  

The number of online nodes in infected state at time t ，

where I (0)N  indicates  the total number of nodes in infected 
state under P2P networks initially 

. ( )OI t  Number of offline nodes transited from state I  at time t

( )NQ t  Number of online nodes in quarantined state at time t  

( )OQ t  Number of offline nodes transited from state Q  at time t

( )NR t  Number of online nodes in immune state at time t  

( )OR t  Number of offline nodes transited from state R  at time t

( )NA t  Number of additional online nodes whose states have been 
transited from S  to L  at time t  

( )O t  Total number of nodes in offline state at time t  

( ) ( )k
NX t  

The number of nodes with k  degree in various states at 
time t , the state which these nodes belonged to is 
determined by values of X , ( , , , , )X S L I Q R∈  

( ) ( )kA t  
The number of additional online nodes with k  degree 

whose states have been transited from S  to L  at time t
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transited from O  to I  and ( )NE tη i  nodes whose states 
have been transited from L  to I ; meanwhile, there are 

( )NI tα i  nodes whose states have been transited from I  
to O , 3 ( )Nr I ti  nodes whose states have been transited 
from I  to R  and ( )NI tχ i  nodes whose states have been 
transited from I  to Q . Hence, theorem 5 holds. 

Theorem 6:  
4( 1) (1 ) ( ) ( ) ( )N N o NQ t r Q t Q t I tα β χ+ = − − + +i i i  

Proof:  

At time 1t + , in addition to original ( )NQ t  nodes in 
state Q , there are ( )oQ tβ i  nodes whose states have been 
transited from O  to Q  and ( )NI tχ i  nodes whose states 
have been transited from I  to Q ; meanwhile, there are 

( )NQ tα i  nodes whose states have been transited from Q  
to O  and 4 ( )Nr Q ti  nodes whose states have been 
transited from Q  to R . Hence, theorem 6 holds. 

Theorem 7:  
1

2 3 4

( 1) (1 ) ( ) ( ) ( )
( ) ( ) ( )

N N o N

N N N

R t R t R t r S t
r L t r I t r Q t

α β+ = − + +
+ + +

i i i
i i i  

Proof:  

At time 1t + , in addition to original ( )NR t  nodes in 
state R , there are ( )oR tβ i  nodes whose states have been 
transited from O  to R  and 

1 2 3 4( ) ( ) ( ) ( )N N N Nr S t r L t r I t r Q t+ + +i i i i  nodes whose 
states have been transited from various states to state R ; 
meanwhile, there are ( )NR tα i  nodes whose states have 
been transited from R  to O . Hence, theorem 7 holds. 

Theorem 8： 
( 1) (1 ) ( ) [ ( ) ( )

( ) ( ) ( )]
N N

N N N

O t O t S t E t
I t Q t R t

β α+ = − + +
+ + +

i i

 
Proof: 

At time 1t + , all nodes in offline state are composed of 
two portions, one is offline nodes that are not yet online 
in the previous unit of time and their number 
is (1 ) ( )O tβ− i ; another is additional offline nodes whose 
states have been transited from various states inherited 
from previous online nodes in the previous unit of time 
and their number is 

[ ( ) ( ) ( ) ( ) ( )]N N N N NS t E t I t Q t R tα + + + +i . 

 Hence, theorem 8 holds. 

C.  Propagation Model Based on Hit-list Scanning 
Strategy (HLS Model) 

Propagation model of active worm based on this attack 
strategy should meet basically same theorems as PRS 
Model. To save space, we only outline different theorems 
with respect to this strategy: 

Theorem 9:  

( )( 1) ( ) {1 [1 1/ ( ( ) ( ))] }NI t
N N NA t S t S t A t λϕ+ = − − − ii i  

 where (0)S T γ= i ， ( ) 0NA t =  

Proof:  

At time t , there are ( ) ( )NS t A t−  P2P nodes left in 
Hit-list that have not been scanned by worm nodes, so the 
probability of an uninfected -stateS node no to be 
selected by a worm is 1 1/ [ ( ) ( )]Ns t A t− − ; meanwhile, 
there are ( )NI t  online infected nodes, each of them will 
be scanned λ times for each round. Therefore the 
probability of a node in state S  that would be scanned at 
least once at time t  
is ( )( ) {1 [1 1/ ( ( ) ( ))] }NI t

N NS t S t A t λ− − − ii ; besides 
probability of a node that would be infected by worm 
node isϕ . Hence, theorem 9 holds. 

D.  Propagation Model Based on Topological Scanning 
Strategy (TPS Model) 

The mean degree value of a node in unstructured P2P 
networks meets power-law distribution according to [18], 
which means the probability of any node with k  degree 
is 1( ) ( / )p k C k εϖ= i  in unstructured P2P networks; 
meantime, each node in structured P2P networks has the 
same degree. 

To save space, we only outline different theorems for 
this attack strategy. The propagation model of active 
worms based on topological scanning strategy in 
unstructured P2P networks should meet following 
theorems: 

Theorem 10: Average probability of a node in state S  
that was infected and transited to state I  by connecting 
to an infected node at time t  in 
unstructured P2P networks is ( ( ))M tϕ Θi  and 

( ) ( )( ( )) ( ( ) ( ) / (1)) / ( )k k
N NM t sP s I t S kP kΘ =∑ ∑i  

Proof:  

At time t , the proportion of infected online nodes with 
k  degree to all the nodes also with k  degree equals 

( ) ( )( ) / (1)k k
N NI t S  and the average probability of a node in 

state S  connected to a node in state I  at time t  in 
unstructured P2P networks is ( ( ))M tΘ  according to [18]; 
the probability of the node in state S  to be infected by a 
worm node is ϕ . Hence, theorem 10 holds. 

Theorem 11: ( )( ) ( 1) ( )[1 (1 ( ( ))) ]kk k
NA t S t M tϕ+ = − − Θi  

Proof:  

The probability of a node with k  degree in state S  
that is not infected by its neighbors at time t  in 
unstructured P2P networks is 1 ( ( ))M tϕ− Θi  according to 
theorem 10. Since this node has k  neighbors, the 
probability of a node with k  degree in state S  that 
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Figure 2.  The scanning rate of a worm node in PRS model affects 
active worm propagation. 
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Figure 3.  The detection rate of monitoring software in PRS model 
affects active worm propagation. 

would be infected at least once by its neighbors equals 
1 (1 ( ( )))kM tϕ− − Θi ; meanwhile, there are ( ) ( )k

NS t  online 
nodes in state S , thus the number of additional online 
nodes with k  degree whose states have been transited 
from S  to L  at time 1t + is 

( )( ) ( 1) ( )[1 (1 ( ( ))) ]kk k
NA t S t M tϕ+ = − − Θi . Hence, theorem 

11 holds. 

Theorem 12: ( 1) ( )[1 (1 ( ( ))) ]NA t S t M t θϕ+ = − − Θi  

Proof:  
The proof of this theorem is similar to the former one, 

except each node under structured P2P networks has the 
same degree. Therefore we only need to change the 
degree of all nodes from k  to θ  in theorem 11. Hence 
theorem 12 holds. 

IV.  NUMERICAL RESULTS AND PERFORMANCE ANALYSIS 

We studied the influence of various parameters in 
models proposed on the propagation speed of active 
worm in P2P networks by MATLAB. The platform we 
used is Microsoft Windows XP Professional SP3 co-
working with 3.1 GHz Processor and 4 GB of memory 
built-in. The initial value of the P2P nodes is 10000. We 
observed the change tendency of infection ratio (infected 
host number / total vulnerable host number) by adjusting 
some particular variables in models to explore critical 
influencing factors applied on active worm propagation. 
Due to space limitation, we can only present a limited 
number of cases here. However, the conclusions we draw 
here generally hold for other cases we have evaluated. 

A.  Numerical Analysis Results of PRS Model 

Fig. 2 shows the influence of the scanning rate of a 
worm node on the propagation speed of active worms. As 
the figure shown, the higher the scanning rate of a worm 
node is, the earlier the peak of infection ratio reaches and 
the greater infection ratio is in early stages of worm 
propagation; while at the middle or later stage of worm 
propagation, the lower the scanning rate of a worm nodes 
is, the greater the infection ratio is. The infection ratio 
caused by active worm propagation falls from the early 
peak and approximates successively to an equilibrium 
point within the middle and later stage. 

The reason why Fig. 2 shapes this way is there are a 
large number of uninfected nodes with security 
vulnerability in early stages of worm propagation; thus 

the higher the scanning rate of a worm node based on 
PRS is, the more effective vulnerable nodes it will find in 
a single scanning round and the faster the infection ratio 
grows; however more and more nodes in state S  have 
been transited to state L  or state I  with rapid growth of 
worm node numbers in P2P networks, when infection 
ratio reaches its maximum, the number of the effective 
vulnerable nodes that can be found by worm nodes begins 
dropping in each scanning round, leading to the decline 
of infection ratio at the middle and later stage. Once the 
incremental infected nodes equal to subtractive infected 
nodes in one scanning round, the infection ratio achieves 
the balance and tends to maintain it. Meanwhile, the 
probability of a worm node with lower scanning rate 
being detected and quarantined by monitoring software 
for its probing attack is lower than that of a worm node 
with higher scanning rate, leading to dropping of worm 
nodes’ number with lower scanning rate whose states 
have been transited to state Q  comparing with higher 
scanning rate ones. Therefore the lower the scanning rate 
of a worm node is, the greater the infection ratio is at the 
middle and later stage of worm propagation. 

Fig. 3 manifests the influence of monitoring software’s 
detection rate on the propagation speed of active worms 
in PRS model. Give the figure, it is obvious to find that 
the lower the detection rate of monitoring software is, the 
greater the infection ratio is. Likewise, the infection ratio 
caused by active worm propagation falls from the early 
peak and approximates successively to an equilibrium 
point at the middle and later stage. 

This is basically because there are fewer worm nodes 
in early stages of worm propagation, the probability of 
monitoring software to find infected nodes spreading 
worm file fragments is relatively low. Hence active 
worms can spread quickly, and the infection ratio also 
increases rapidly; however then more and more worm 
nodes are detected and quarantined by monitoring 
software with rapid growth of worm node numbers in 
P2P networks, causing the decline of infection ratio at the 
middle and later stage. Likewise, when the incremental 
infected nodes are equal to the subtractive infected nodes 
in a single round, the infection ratio achieves the balance 
and maintains it. Meanwhile, the higher the detection rate 
of monitoring software is, the larger the probability of 
detecting worm behavior is and the better the inhibitory 
effect of active worm propagation is. 
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Figure 4.  The offline rate of an online node in PRS model affects 
active worm propagation. 
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Figure 5.  The level of immune response of an online node in PRS 
model affects active worm propagation. 
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Figure 6.  The scanning rate of a worm node in HLS model affects 
active worm propagation 

Fig. 4 shows the influence of the offline rate on an 
online node towards propagation speed of active worms 
in PRS model. As the figure shows, the lower the offline 
rate of an online node is, the greater the infection ratio is 
in the early stages of worm propagation, while at the 
middle and later stage of worm propagation, the higher 
the offline rate of an online node is, the greater the 
infection ratio is.  

This phenomenon indicates that there are a large 
number of uninfected nodes with security vulnerability in 
early stages of worm propagation, providing a lot of 
potential targets for active worms based on PRS model. 
By this stage, the lower the offline rate of an online node 
is, the more online nodes in state S  there are, the more 
potential targets of attack for active worms are and the 
faster the infection ratio rises. However after infection 
ratio reaches its early maximum, more and more nodes in 
state S  have been transited to state L  or state I , the 
number of potential targets that can be attacked by worm 
nodes gradually dwindles away, meanwhile more and 
more worm nodes have been detected and quarantined by 
monitoring software due to spread of worm file fragments, 
causing drop of infection ratio. Then more and more 
various offline nodes are transited to state S  since they 
have reinstalled OS and been back online. The tendency 
will even reinforce more with increase of offline rate on 
online nodes, providing more new potential targets for 
active worms. Hence, the higher the offline rate of an 
online node is, the faster the infection ratio rises at the 
middle and later stage of worm propagation. 

Fig. 5 shows influence of an online node’s different 
levels of immune response on propagation speed of active 
worms in PRS model. Judging from the figure given, the 
higher the level of immune response of an online node is, 
the lower the infection ratio is. Likewise, the infection 
ratio caused by active worm propagation falls from the 
early peak and approximates successively to an 
equilibrium point at the middle and later stage. 

It could be explained as the higher the level of immune 
response of online nodes is, the larger the probability of 
security software discovering various kinds of online 
nodes with security vulnerability is. Therefore the lower 
the infection ratio is. When the number of incremental 
infected nodes equals to the subtractive infected nodes’ in 
a single attack round, infection ratio achieves the balance 
and tends to maintain it. Obviously, the level of immune 
response of online nodes has great influence on active 
worm propagation. 

B.  Numerical Analysis Results of HLS Model 

Fig. 6 shows that the scanning rate of a worm node 
based both on random scanning strategy and Hit-list 
scanning strategy produces the same effect on the 
propagation speed of active worms. The higher the 
scanning rate of a worm node is, the earlier the peak of 
infection ratio reaches and the greater the infection ratio 
is in early stages of worm propagation; while at the 
middle and later stage of worm propagation, the lower 
scanning rate of a worm nodes is, the greater the infection 
ratio is, (the reason of this result is shown in the analysis 
of figure 2) but the scanning rate of  a worm node based 
on Hit-list scanning strategy has less impact on the 
infection ratio than that of a worm node based on random 
scanning strategy since all online active worms based on 
HLS only select targets from the same Hit-list, there are 
only small number of non-scanned targets left in the Hit-
list at the middle or later stage of worm propagation. 
Hence the number of remaining worm nodes influenced 
by scanning rate has little effect on infection ratio. 

Fig. 7 shows the influence of the detection rate of 
monitoring software on propagation speed of active 
worms in HLS model. As the figure shown, the lower the 
detection rate of monitoring software is, the greater the 
infection ratio is. Likewise, the infection ratio caused by 
active worm propagation falls from the early peak and 
approximates successively to an equilibrium point at the 
middle and later stage. This figure can be analyzed 
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Figure 7.  The detection rate of monitoring software in HLS model 
affects active worm propagation 
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Figure 8.  The offline rate of an online node in HLS model affects 
active worm propagation 
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Figure 9.  The level of immune response of an online node in HLS 
model affects active worm propagation n 
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Figure 10.  Degree of nodes in TPS model affects active worm 

referring to figure 3, we won't dwell on it due to space 
limitation. 

Fig. 8 shows influence of the offline rate applied to an 
online node on the propagation speed of active worms 

under HLS model. As the figure shown, the higher the 
offline rate of an online node is, the lower the infection 
ratio is. The infection ratio caused by active worm 
propagation falls from the early peak and approximates 
successively to an equilibrium point at the middle and 
later stage. 

As you can see in Fig. 4 and Fig. 8, the offline rate of 
an online node has more significant effect on active worm 
propagation based on PRS than that of HLS. The reason 
is that all active worms based on HLS only select targets 
from the Hit-list, the higher the offline rate of an online 
node is, the shorter the valid period of Hit-list is, the 
lower probability of active worms selecting effective 
online targets is and the lower the infection ratio caused 
by active worm propagation based on HLS is. Most of the 
nodes in Hit-list are still online in early stages of worm 
propagation, making them effective targets of active 
worms based on HLS and thus the infection ratio rises 
rapidly; after infection ratio reaches its early maximum, 
the number of effective targets that can be selected by 
active worms left in Hit-list gradually dwindles down, 
causing the infection ratio drop down; when the 
incremental infected nodes equal to the subtractive 
infected nodes in a single attack round, the infection ratio 
achieves the balance and maintains it. 

Fig. 9 shows the influence of an online node’s different 
levels of immune response on propagation speed of active 
worms in HLS model. As the figure shown, the higher the 
level of immune response of an online node is, the lower 

the infection ratio is. Likewise, the infection ratio caused 
by active worm propagation falls from the early peak and 
approximates successively to an equilibrium point at the 
middle and later stage. This figure can be analyzed 
referring to figure 5, we won't dwell on it due to space 
limitation. 

C.  Numerical Analysis Results of TPS Model 

Fig. 10 shows the influence of degree of a node in 
structured P2P networks on the propagation speed of 
active worms. As the figure shown, the higher the 
degree of a nodes is, the greater the infection ratio is 
and the earlier the peak of infection ratio reaches in 
early stages of worm propagation; while at the middle 
and later stage of worm propagation, the higher the 
degree of a node is, the lower the infection ratio is; 
when the degree of a node in structured P2P networks 
reaches a fixed value, a small increase in the degree 
of a node may not address significant impact on the 
propagation speed of active worms. Experimental 
results of the propagation model of active worms 
based on TPS model in unstructured P2P networks 
can be found in [14], which we do not offer specifics 
due to space limitation. 

This is because there are a large number of uninfected 
nodes with security vulnerability in early stages of worm 
propagation. The higher the degree of a nodes in 
structured P2P networks is, the more effective targets 
active worms will be found in a single scanning round 
and the faster the infection ratio grows; however more 
and more nodes in state S  have been transited to state L  
or state I  with rapid growth of worm node numbers in 
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Figure 11.  The detection rate of monitoring software in TPS model 
affects active worm 
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Figure 12.  The offline rate of an online node in TPS model affects 
active worm 
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Figure 13.  The level of immune response of an online node in TPS 
model affects active worm 

P2P networks; after infection ratio reaches its maximum, 
the number of the effective targets that can be found by 
worm nodes gradually dwindles away in each scanning 
round, which leads to the decline of infection ratio at the 
middle and later stage of worm propagation. When the 
number of incremental infected nodes equals to the 
subtractive infected nodes’ in a single round, infection 
ratio achieves the balance and tends to maintain it. 
Meanwhile, the lower the degree of a node is in 
structured P2P networks, the fewer the number of nodes 
can be simultaneously scanned by active worms based on 
TPS in each scanning round, and the lower the 
probability of a worm node based on TPS detected and 
quarantined by monitoring software is. Therefore, the 
lower the degree of a node is, the greater the infection 
ratio is at the middle and later stage of worm propagation. 

Fig. 11 shows the influence of detection rate of 
monitoring software on propagation speed of active 
worms in TPS model. As the figure shown, the lower the 
detection rate of monitoring software is, the greater the 
infection ratio is. Likewise, the infection ratio caused by 
active worm propagation falls from the early peak and 
approximates successively to an equilibrium point at the 
middle and later stage. This figure can be analyzed 
referring to figure 3, therefore we won't dwell on it due to 
space limitation. 

Fig. 12 shows the influence of an online node’s offline 
rate on propagation speed of active worms in TPS model. 
As the figure shown, the higher the offline rate of an 
online node is, the lower the infection ratio will be and  

the infection ratio caused by active worm propagation 
falls from the early peak and approximates successively 
to an equilibrium point at the middle and later stage of 
worm propagation. 

The reason is that active worms based on TPS select 
targets according to network topology; the higher the 
offline rate of an online node is, the lower probability of 
active worms selecting effective online targets is; the 
higher the offline rate of an online node is, the lower the 
infection ratio caused by active worm propagation based 
on TPS is. Most of the nodes in P2P networks are still 
online in early stages of worm propagation, making them 
effective targets of active worms based on TPS, and the 
infection ratio rises gradually; after infection ratio reaches 
its early maximum, the number of online targets that can 
be selected by active worms left in P2P networks 
dwindles away and causes gradual drop of infection ratio; 
when the number of incremental infected nodes equals to 
subtractive infected nodes’ in a single attack round,  
infection ratio achieves the balance and tends to maintain 
it. As you can see in figure 8 and figure 12, the offline 
rate of an online node has more significant effect on 
active worm propagation based on TPS than that of 

HLS． 
Fig. 13 shows the influence of different levels of 

immune response of an online node on propagation speed 
of active worms in TPS model. As the figure shown, the 
higher the level of immune response of an online node is, 
the lower the infection ratio is. Likewise, the infection 
ratio caused by active worm propagation falls from the 
early peak and approximates successively to an 
equilibrium point at the middle and later stage. As you 
can see in figure 8 and figure 12, the level of immune 
response of an online node has more significant effect on 
active worm propagation based on TPS than that of active 
HLS. The analysis can be referred to figure 5, we won't 
dwell on it due to space limitation. 

In conclusion, it can effectively suppress propagation 
of active worms by increasing detection rate of 
monitoring software and improving the level of immune 
response of online nodes, no matter which attack strategy 
active worms are based on. Besides, increasing offline 
rate has better inhibition to propagation of active worms 
based on HLS or TPS. 
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V.  CONCLUSION AND FUTURE WORK 

In this paper, we studied three major attack strategies 
of active worms in P2P networks, provided states 
transition process of nodes as active worms spread in 
accordance with these strategies respectively. Then three 
propagation models based on these attack strategies were 
developed with fair consideration of dynamic features 
within P2P nodes. Next a mathematical analysis towards 
propagation models proposed was conducted and testified 
with various parameters affecting active worm 
propagation. Finally we deduced a number of key 
parameters affecting propagation speed of active worms 
in P2P networks. 

For future work, we plan to further the study of 
improving detection rate of monitoring software based on 
dynamic characteristics of active worms, as well as 
building an efficient defense system for preventing active 
worms from these work.  
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